Article ID Journal Published Year Pages File Type
728080 Materials Science in Semiconductor Processing 2015 16 Pages PDF
Abstract

The structural, electronic, elastic and magnetic properties of gadolinium and its hydrides GdHx (x=1, 2, 3) are investigated by using Vienna ab-initio simulation package with the generalized gradient approximation parameterized by Perdew, Burke and Ernzerhof (GGA-PBE) plus a Hubbard parameter (GGA-PBE+U) in order to include the strong Coulomb correlation between localized Gd 4f electrons. At ambient pressure all the hydrides are stable in the ferromagnetic state. The calculated lattice parameters are in good agreement with the experimental results. The bulk modulus is found to decrease with the increase in the hydrogen content for the gadolinium hydrides. A pressure-induced structural phase transition is predicted to occur from cubic to hexagonal phase in GdH and GdH2 and from hexagonal to cubic phase in GdH3. The electronic structure reveals that mono and di-hydrides are metallic, whereas trihydride is half-metallic at normal pressure. On further increasing the pressure, a half-metallic to metallic transition is also observed in GdH3. The calculated magnetic moment values of GdHx (x=1, 2, 3) are in accord with the experimental values.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,