Article ID Journal Published Year Pages File Type
728439 Materials Science in Semiconductor Processing 2014 10 Pages PDF
Abstract

A series of Sn-doped BiOCl photocatalysts were successfully synthesized at room temperature via a facile oxidation-reduction method. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoemission spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS) and photoluminescence (PL) emission spectroscopy measurements. The results showed that the as-prepared samples exhibited tetragonal crystal structure, lamellar morphology and band gap energy of 3.12 eV and 2.91 eV for BiOCl and Sn(10%)-doped BiOCl, respectively. XPS results showed that Sn was in the form of tetra-valence. The photocatalytic activities of as-synthesized samples were evaluated by the degradation of benzoic acid (BA) and rhodamine B (RhB) in an aqueous solution. The results revealed that the Sn doping could enhance the photocatalytic performance of BiOCl and the highest photocatalytic activity was achieved by the Sn(10%)-doped BiOCl, in addition, the optimum dosage of Sn(10%)-doped BiOCl was 0.4 mg/L in degrading BA. The improved photocatalytic activity of Sn-doped BiOCl could be attributed to the narrower band gap energy (2.91 eV) than pure BiOCl. Furthermore, scavenger experimental results indicated that h+ played the pivotal role in BA photocatalytic degradation. What is more, the as-synthesized Sn(10%)-doped BiOCl photocatalyst exhibited a good stability during the photodegradation of BA and RhB, revealing its promising prospect in the practical application of the treatment of organic wastewaters.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,