Article ID Journal Published Year Pages File Type
728582 Materials Science in Semiconductor Processing 2012 5 Pages PDF
Abstract

Aluminum nitride (AlN) film, which is being investigated as a possible passivation layer in inkjet printheads, was deposited on a Si (1 0 0) substrate at 400 °C by radio frequency (RF) magnetron sputtering using an AlN ceramic target. Dependence on various reactive gas compositions (Ar, Ar:H2, Ar:N2) during sputtering was investigated to determine thermal conductivity. The crystallinity, grain size, and Al–N bonding changes by the gas compositions were examined and are discussed in relation to thermal conductivity. Using an Ar and 4% H2, the deposited AlN films were crystalline with larger grains. Using a higher nitrogen concentration of 10%, a near amorphous phase, finer morphology, and an enhanced Al–N bonding ratio were achieved. A high thermal conductivity of 134 W/mk, which is nine times higher than that of the conventional Si3N4 passivation film, was obtained with a 10% N2 reactive gas mixture. A high Al–N bonding ratio in AlN film is considered the most important factor for higher thermal conductivity.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, ,