Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
729194 | Materials Science in Semiconductor Processing | 2015 | 5 Pages |
An in-situ polymerization method has been employed to prepare CuO/PANI nanocomposite. The prepared samples have been characterized by X-ray diffraction (XRD), FTIR spectroscopy, field emission scanning electron microscopy (FESEM), and BET analysis. Application of the prepared samples has been evaluated as supercapacitor material in 1 M Na2SO4 solution using cyclic voltammetry (CV) in different potential scan rates, ranging from 5 to 100 mV s−1, and electrochemical impedance spectroscopy (EIS). The specific capacitance of CuO/PANI has been calculated to be as high as 185 F g−1, much higher than that obtained for pure CuO nanoparticles (76 F g−1). Moreover, the composite material has shown better rate capability (75% capacitance retention) in various scan rates in comparison with the pure oxide (30% retention). EIS results show that the composite material benefits from much lower charge transfer resistance, compared to CuO nanoparticles. Moreover, much better cyclic performance has been achieved for the composite material.