Article ID Journal Published Year Pages File Type
7291954 Human Movement Science 2015 14 Pages PDF
Abstract
Asymmetric gait is a hallmark of many neurological and musculoskeletal conditions. This behavior is often the result of a decrease in the stability of interlimb coordination, and synchronization to external signals such as auditory cuing or another walking individual may be helpful for altering abnormal movement patterns. The purpose of this study was to investigate the interaction between interlimb coordination and unintentional, interpersonal synchronization of gait in healthy individuals in response to unilateral ankle loading. Fifty participants completed four trials while walking on a motorized treadmill: (1) by themselves, (2) with a partner on an adjacent treadmill, (3) by themselves with additional weight applied unilaterally to their right ankle, and (4) with both a partner and unilateral weight. As expected, the addition of unilateral weight increased asymmetry according to several spatiotemporal measures of gait, but the presence of a partner on an adjacent treadmill significantly reduced this effect. Further, the amount of unintentional, interpersonal synchronization among pairings was relatively unaffected by the addition of ankle weight to one of the partners. All pairings realized a beneficial effect on asymmetrical gait but this effect was greater for pairings that consistently synchronized unintentionally. These results suggest that side by side walking might be an effective approach for influencing bilateral coordination of gait and may hold insight for understanding gait asymmetry and interlimb movement variability.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , ,