Article ID Journal Published Year Pages File Type
7299806 Neurobiology of Learning and Memory 2015 13 Pages PDF
Abstract
Retrieval of episodic memories is a multi-component act that relies on numerous operations ranging from processing the retrieval cue, evaluating retrieved information, and selecting the appropriate response given the demands of the task. Motivated by a rich functional neuroimaging literature, recent theorizing about various computations at retrieval has focused on the role of posterior parietal cortex (PPC). In a potentially promising line of research, recent neuroimaging findings suggest that different subregions of dorsal PPC respond distinctly to different aspects of retrieval decisions, suggesting that better understanding of their contributions might shed light on the component processes of retrieval. In an attempt to understand the basic operations performed by dorsal PPC, we used functional MRI and functional connectivity analyses to examine how activation in, and connectivity between, dorsal PPC and ventral temporal regions representing retrieval cues varies as a function of retrieval decision uncertainty. Specifically, participants made a five-point recognition confidence judgment for a series of old and new visually presented words. Consistent with prior studies, memory-related activity patterns dissociated across left dorsal PPC subregions, with activity in the lateral IPS tracking the degree to which participants perceived an item to be old, whereas activity in the SPL increased as a function of decision uncertainty. Importantly, whole-brain functional connectivity analyses further revealed that SPL activity was more strongly correlated with that in the visual word-form area during uncertain relative to certain decisions. These data suggest that the involvement of SPL during episodic retrieval reflects, at least in part, the processing of the retrieval cue, perhaps in service of attempts to increase the mnemonic evidence elicited by the cue.
Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , ,