Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7300099 | Neurobiology of Learning and Memory | 2014 | 12 Pages |
Abstract
Representations in working memory (WM) are temporary, but can be refreshed for longer periods of time through maintenance mechanisms, thereby establishing their availability for subsequent memory tests. Frontal brain regions supporting WM maintenance operations undergo anatomical and functional changes with advancing age, leading to age related decline of memory functions. The present study focused on age-related functional connectivity changes of the frontal midline (FM) cortex in the theta band (4-8 Hz), related to WM maintenance. In the visual delayed-match-to-sample WM task young (18-26 years, N = 20) and elderly (60-71 years N = 16) adults had to memorize sample stimuli consisting of 3 or 5 items while 33 channel EEG recording was performed. The phase lag index was used to quantify connectivity strength between cortical regions. The low and high memory demanding WM maintenance periods were classified based on whether they were successfully maintained (remembered) or unsuccessfully maintained (unrecognized later). In the elderly reduced connectivity strength of FM brain region and decreased performance were observed. The connectivity strength between FM and posterior sensory cortices was shown to be sensitive to both increased memory demands and memory performance regardless of age. The coupling of frontal regions (midline and lateral) and FM-temporal cortices characterized successfully maintained trials and declined with advancing age. The findings provide evidence that a FM neural circuit of theta oscillations that serves a possible basis of active maintenance process is especially vulnerable to aging.
Related Topics
Life Sciences
Neuroscience
Behavioral Neuroscience
Authors
Brigitta Tóth, Zsófia Kardos, Bálint File, Roland Boha, Cornelis Jan Stam, Márk Molnár,