Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
732839 | Optics & Laser Technology | 2011 | 9 Pages |
The flow field developed in the laser produced melt pool is investigated and the influence of the Marangoni effect on temperature field is examined. The experiment is carried out to trace the solidified melt pool geometry and the heating is simulated in line with the experimental conditions to predict the melt size in the irradiated region. In the simulations, the control volume approach is used incorporating the Marangoni effect. The enthalpy-porosity method is adopted to account for the phase change in the irradiated region. The study is extended to include the influence of the laser intensity parameter (β) on temperature and the flow field in the melt pool. It is found that the melt pool geometry and the flow field in the melt pool is influenced by the laser intensity parameter. In this case, the number of circulation cell formed in the melt pool is doubled for the intensity parameter 0.4≤β≤0.6. The predictions of the melt pool geometry agree well with the experimental data.