Article ID Journal Published Year Pages File Type
733051 Optics & Laser Technology 2009 11 Pages PDF
Abstract

This paper introduces a theoretical study of longitudinal mode competition in semiconductor lasers subject to optical feedback. The study is based on a model of time-delay multimode rate equations taking into account both symmetric and asymmetric suppressions of modal gain. The model is numerically solved and applied to the case of a short-external cavity. Mode competition is characterized along the feedback-induced period-doubling route to chaos as well as under chaotic dynamics. Contributions of symmetric and asymmetric gain suppressions to both mode dynamics and modal operation under OFB are clarified. The results show that under chaotic dynamics, mode competition induces multimode hopping giving rise to asymmetric multimode output spectra. In regimes of continuous-wave operation, mode competition supports single-mode oscillation, and the side-mode suppression ratio improves with the increase of feedback. In the regime of strong feedback, the lasing mode moves to either long- or short-wavelength side in a seemingly random fashion, which is strongly related to asymmetric gain suppression.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
,