Article ID Journal Published Year Pages File Type
733061 Optics & Laser Technology 2008 13 Pages PDF
Abstract

In this paper, the thermal characteristics of packaged infrared double-heterostructure light emitting diode (DH-LED), used in space applications, are measured under conditions that reproduce space environments. The characterisation uses spontaneous optical spectrum characteristics, current–voltage curves and optical power measured under a primary vacuum (<10−2 Torr) at temperatures between −30 and 100 °C. The investigations have been specifically oriented toward the extraction of junction temperature in the steady-state regime and junction-to-case thermal resistance. A specific model based on semiconductor theory for electrical transport has been used to calculate the shape of the spontaneous emission spectrum between the band-gap energy and higher energies and its change versus temperature. A linear relation between the junction temperature and the dissipated power has been found for various case temperatures appropriately controlled in a LN2 cryostat. These results confirm that thermal behavior of DH-LEDs depends on both environment temperature and dissipated power level in the active zone and that the junction-to-case thermal resistance is not constant over a large range of temperatures, diminishing at higher currents as already reported by recent papers on high brightness DH-LED. Finally, this study could represent a practical non-destructive method providing qualitative information about variations of junction temperature and junction-to-case thermal resistance taking into account an industrial qualification framework approach based on electroluminescence analysis, frequently measured by manufacturers or end-users.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , ,