Article ID Journal Published Year Pages File Type
733333 Optics & Laser Technology 2015 6 Pages PDF
Abstract

•The effectiveness of fiber optic sensors for corrosion evaluation was verified.•A uniform interface of rock bolt with cement determined corrosion development.•Non-destruction of fiber optic sensor was critical for corrosion monitoring.

Corrosion of rock bolts is a major cause for deterioration of the anchor-reinforced concrete slopes structures. In order to evaluate this corrosion-based deterioration in an early stage, a nondestructive technique was required. However, until now, there are no commercialized solutions that are straightforwardly available. Here, a low-coherent fiber-optic sensing technique was developed. This method can carry out the monitoring of the corrosion-caused expansion at the accuracy of sub-microstrains by circled the sensing optical fiber in two ways. One was wound the fiber on the surface of steel rock bolt directly, and thereby generated a nonuniformity in the interface of cement with rock bolt. The other was circled the fiber on a cement mortar cushion without destroying the interface any way. The sensing fiber was configured as one arm of the fiber-optic Michelson interferometer. The acceleration corrosion experiments demonstrated that a uniform interface between cement and rock bolt determined the progress of corrosion development. An early stage evaluation of the corrosion development in rock bolts was monitored.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , ,