Article ID Journal Published Year Pages File Type
733935 Optics & Laser Technology 2009 6 Pages PDF
Abstract

The focus-shaping technique of a cylindrically polarized vortex beam by a high numerical-aperture lens is reported. Such a polarized vortex beam is decomposed into radial and azimuthal polarization. It is shown that the total intensity distribution in the focal region is dependent not only on the numerical-aperture maximal angle and the polarization rotation angle but also on the topological charge. By choosing the proper combination of parameters, the adjustably confined flat-topped focus and focal hole can be obtained. The focus-shaping technique may find wide applications, such as optical tweezers, laser printing and material processing.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,