Article ID Journal Published Year Pages File Type
733956 Optics & Laser Technology 2009 5 Pages PDF
Abstract

We have investigated numerically the propagation of high-intensity femtosecond optical pulses with pulsewidth of 100 fs (half width at 1/e maximum) on the silicon-on-insulator (SOI) optical waveguide when the central wavelength of the pulse locates in the normal dispersion region. Results show that the combined effects of group-velocity dispersion (GVD), third-order dispersion (TOD), self-phase modulation (SPM), and free-carrier dispersion (FCD) can lead to the phenomenon of optical wave breaking that manifests as an asymmetric profile and oscillation near the trailing edge of the pulse. Moreover, the optical wave breaking will be experienced from generation to disappearance during propagation.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,