Article ID Journal Published Year Pages File Type
734140 Optics & Laser Technology 2008 8 Pages PDF
Abstract

The characteristics of partially coherent Bessel-Gaussian beams propagating in turbulent atmosphere are investigated. Based on the extended Huygens–Fresnel principle, the influence of topological charges and coherence of the source on the intensity and the degree of coherence in the received plane are considered. The influence of atmospheric turbulence on beam profile and coherence in the received plane is also analyzed. It is found that a Bessel-Gaussian shaped intensity distribution will eventually transform into a Gaussian distribution after propagating in turbulent atmosphere. Meanwhile, topological charges, coherence of the source and atmospheric turbulence will also influence the propagation characterizations of the beams.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,