Article ID Journal Published Year Pages File Type
734206 Optics & Laser Technology 2008 8 Pages PDF
Abstract

The present work develops two numerical models to compute thermal phenomena during pulsed laser welding. The first one which is based on finite difference model calculates the welding width and its penetration by utilizing heat transfer equations. Parametric design capabilities of the finite element code ANSYS were also employed for the simulation of the second model. The transient temperature profiles, the fusion dimensions and the heat affected zones (HAZ) have been calculated here. The thermo-physical properties are dependent on temperature and so a nonlinear solution is employed. It is found that the temperature profile and penetration depth are strongly dependent on the pulse parameters of laser beam. Finally, the results of the two models and the experimental outcomes are compared.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,