Article ID Journal Published Year Pages File Type
734278 Optics & Laser Technology 2007 7 Pages PDF
Abstract
Based on the vectorial Rayleigh diffraction integral and the hard-edge aperture function expanded as the sum of finite-term complex Gaussian functions, an approximate analytical expression for the propagation equation of vectorial Gaussian beams diffracted at a circular aperture is derived and some special cases are discussed. By using the approximate analytical formula and diffraction integral formula, some numerical simulation comparisons are done, and some special cases are discussed. We find that a circular aperture can produce the focusing effect but the beam becomes the shape of ellipse in the Fresnel region. When the Fresnel number is equal to unity, the beam is circular and the focused spot reaches a minimum.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,