Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
734299 | Optics & Laser Technology | 2016 | 5 Pages |
•Dynamics capabilities of 3D scanheads are discussed.•Methodology to evaluate the dynamic deficiencies of Dynamic Focusing Modules.•The dynamic capabilities of DFM are 10% of those of the XY beam deflectors.
The broader use of laser micro-processing technology increases the demand for executing complex machining and joining operations on free-from (3D) workpieces. To satisfy these growing requirements it is necessary to utilise 3D scanheads that integrate beam deflectors (X and Y optical axes) and Z modules with high dynamics. The research presented in this communication proposes an experimental technique to quantify the dynamic capabilities of Z modules, also called Dynamic Focusing Modules (DFM), of such 3D scanheads that are essential for efficient, accurate and repeatable laser micro-processing of free form surfaces. The proposed experimental technique is validated on state-of-art laser micro-machining platform and the results show that the DFM dynamic capabilities are substantially inferior than those of X and Y beam deflectors, in particular the maximum speed of the Z module is less than 10% of the maximum speeds achievable with X and Y optical axes of the scanhead. Thus, the DFM dynamics deficiencies can become a major obstacle for the broader use of high frequency laser sources that necessitate high dynamics 3D scanheads for executing cost effectively free-form surface processing operations.