Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
734639 | Optics & Laser Technology | 2011 | 10 Pages |
A two-dimensional multiscale windowed Fourier transform (2D-MWFT), based on two-dimensional Gabor wavelet transform (2D-GWT), for the phase extraction from a spatial fringe pattern in fringe projection profilometry is presented. First, the instantaneous frequencies on x and y direction of the modulated fringe pattern are determined by 2D-GWT, and then the local stationary lengths are obtained. The 2D-MWFT with different two-dimensional Gaussian windows whose width is set according to the local stationary length is preformed for each section of the modulated fringe pattern to achieve multiresolution analysis and phase demodulation. Comparing the result of the phase demodulated by 2D-GWT and two-dimensional windowed Fourier transform (2D-WFT) with that by 2D-MWFT in a numerical simulation, we show that the 2D-MWFT method is superior to these methods, especially for the local non-stationary signal with low frequency. The theory and the results of a simulation and experiment are shown.