Article ID Journal Published Year Pages File Type
735498 Optics and Lasers in Engineering 2009 6 Pages PDF
Abstract

We report the influence of substrate temperature on femtosecond laser ablation of silicon, stainless steel, and glass. Remarkable decrease in surface roughness was observed under high substrate temperature for silicon and stainless steel. While the ablation efficiency of glass as a typical wide band-gap material is scarcely altered at 900 K, the efficiency for stainless steel as a conductor apparently increased about 20% accompanied to the elevation of substrate temperature from 300 to 900 K. Silicon wafer results in slight increase of the ablation efficiency with decreasing the ablation threshold. Considering that the melting temperature of glass is much lower than those of silicon and steel, the observations from this work suggests that the material ablation caused by the ultrafast laser irradiation could not be explained in term of only laser-induced thermal excitation.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,