Article ID Journal Published Year Pages File Type
735525 Optics and Lasers in Engineering 2006 10 Pages PDF
Abstract

A novel process for laser soldering of flip-chips on transparent printed circuit board assemblies is presented. The experiments were carried out on silver test patterns printed on glass wafers using a roller-type gravure offset printing method. The contact pads, where the bumps of the flip-chips are positioned, were covered with a thin layer of additional solder paste. The aligned samples (solder pad—solder paste—chip bump) were illuminated through the glass substrate using an Ar+ laser beam (λ=488nm, P=0.6–3.0W, d=100μm at 1/e) to heat the printed pad and melt the solder paste, thus forming a joint between the printed pad and the chip bump. The heat-affected zone was modeled using computer-assisted finite element method. The solder joint cross-sections were analyzed using optical and electron microscopy as well as energy dispersive X-ray element analyses. The laser-soldered joints were of good mechanical and electrical quality and the process proved to be suitable for manufacturing customized circuit prototypes.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , , ,