Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7357850 | Journal of Econometrics | 2018 | 25 Pages |
Abstract
It is well known that quasi maximum likelihood (QML) estimation of dynamic panel data (DPD) models with short panels depends on the assumptions on the initial values, and a wrong treatment of them will result in inconsistency and serious bias. The same issues apply to spatial DPD (SDPD) models with short panels. In this paper, a unified M-estimation method is proposed for estimating the fixed-effects SDPD models containing three major types of spatial effects, namely spatial lag, spatial error and space-time lag. The method is free from the specification of the distribution of the initial observations and robust against nonnormality of the errors. Consistency and asymptotic normality of the proposed M-estimator are established. A martingale difference representation of the underlying estimating functions is developed, which leads to an initial-condition free estimate of the variance of the M-estimators. Monte Carlo results show that the proposed methods have excellent finite sample performance.
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Zhenlin Yang,