Article ID Journal Published Year Pages File Type
7358159 Journal of Econometrics 2018 20 Pages PDF
Abstract
We develop methods for inference in nonparametric time-varying fixed effects panel data models that allow for locally stationary regressors and for the time series length T and cross-section size N both being large. We first develop a pooled nonparametric profile least squares dummy variable approach to estimate the nonparametric function, and establish the optimal convergence rate and asymptotic normality of the resultant estimator. We then propose a test statistic to check whether the bivariate nonparametric function is time-varying or the time effect is separable, and derive the asymptotic distribution of the proposed test statistic. We present several simulated examples and two real data analyses to illustrate the finite sample performance of the proposed methods.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,