Article ID Journal Published Year Pages File Type
736132 Optics and Lasers in Engineering 2010 10 Pages PDF
Abstract

Laser cutting of sharp edge and thermal stress development in the cutting section is examined. The finite element method is used to predict temperature and stress fields while the X-ray diffraction (XRD) technique is used to measure the residual stress around the cut edges. A mild steel sheet with 5 mm thickness is used in the simulations and the experiment. The morphological and metallurgical changes around the edges are examined using the optical microscopy and scanning electron microscopy (SEM). It is found that temperature remains high at the sharp edge when the laser beam is located in this region. This, in turn, lowers the cooling rate and reduces von Mises stress in this region. The magnitude of the residual stress is about 90 MPa at the sharp corner while the maximum von Mises stress is in the order of 280 MPa, which occurs away from sharp corner. In addition, the residual stress predicted agrees with the experimental data.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,