Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
736719 | Sensors and Actuators A: Physical | 2009 | 10 Pages |
Low-cost inertial/magnetic sensors are typically used to determine sensor attitude in navigation systems and biomedical applications. Different calibration procedures must be performed to correctly process sensor readings to achieve precise attitude reconstruction. This paper aims at providing a unified calibration framework in order to determine different calibration parameters such as sensor sensitivities, offsets, misalignment angles, and mounting frame rotation matrix. The sensor frame calibration procedure is reformulated in an ellipsoid-fitting problem and several approaches are reviewed in this perspective and a new approach is proposed. A mounting frame calibration procedure is also proposed that consists in simple in-plane movements. Simulation and experimental results gathered with low-cost sensors are shown and several calibration procedures are compared.