Article ID Journal Published Year Pages File Type
736779 Sensors and Actuators A: Physical 2015 9 Pages PDF
Abstract

In this work, we successfully demonstrate the fabrication of vertically aligned carbon nanotube (VACNT)-polypyrrole (PPY) nanocomposites as a “hybrid supercapacitor” material directly integrated on silicon-based electrodes. In contrast to previous works, three distinctive achievements have been accomplished: (1) a “hybrid supercapacitor” using VACNT forest with electroplated PPY and dodecylbenzenesulfonate (DBS) as a dopant in acetonitrile, (2) realizing 500% higher capacitance as compared to the capacitance of electrodes made of VACNT or DBS-doped PPY alone, and (3) highly reversible cycling between −1 V and +1 V with improved knee frequency at 797 Hz. As such this hybrid nanocomposite could become a new class of material for future supercapacitors. We also demonstrate the life-cycle stability of the VACNT-PPY nanocomposite supercapacitor, as well as its rapid charge-discharge capabilities and low leakage current. Electrochemical impedance modeling results suggest that the VACNT-PPY supercapacitor has higher electric double layer capacitance in addition to higher pseudocapacitance compared to uncoated VACNTs.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,