Article ID Journal Published Year Pages File Type
7375696 Physica A: Statistical Mechanics and its Applications 2018 34 Pages PDF
Abstract
Using intraday data of the CSI300 index, this paper discusses value-at-risk (VaR) forecasting of the Chinese stock market from the perspective of high-frequency volatility models. First, we measure the realized volatility (RV) with 5-minute high-frequency returns of the CSI300 index and then model it with the newly introduced heterogeneous autoregressive quarticity (HARQ) model, which can handle the time-varying coefficients of the HAR model. Second, we forecast the out-of-sample VaR of the CSI300 index by combining the HARQ model and extreme value theory (EVT). Finally, using several popular backtesting methods, we compare the VaR forecasting accuracy of HARQ model with other traditional HAR-type models, such as HAR, HAR-J, CHAR, and SHAR. The empirical results show that the novel HARQ model can beat other HAR-type models in forecasting the VaR of the Chinese stock market at various risk levels.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , , , ,