Article ID Journal Published Year Pages File Type
7375778 Physica A: Statistical Mechanics and its Applications 2018 23 Pages PDF
Abstract
In this study, we propose a novel rumor spreading model in consideration of the individuals' subjective judgment and diverse characteristics. To reflect the diversity of the individuals' characteristics, we introduce two probability distribution functions, which could be chosen arbitrarily or given by empirical data, to characterize individuals' mastering degree of knowledge with respect to the domain of a specific rumor and individuals' rationality degree. Different from existing models, no two persons in our model are identical, and each individual can judge the authenticity of the information, e.g., rumors, with his distinctive characteristics. In addition, by means of the mean-field method, we establish the expression of the dynamics of the rumor propagation in the complex heterogeneous networks and derive the rumor spreading threshold. Through the theoretical analysis, we find that the threshold is independent of the forms of the two introduced functions. Furthermore, we prove the stability of the rumor-free equilibrium set E0. That is if and only if R0<1, the rumor-free equilibrium set E0 is globally asymptotically stable. Finally, we conduct a series of numerical simulations to verify the theoretical results and comprehensively illustrate the evolution of the model. The simulation results show that because of the diversity of individuals' characteristics, it becomes more difficult for the rumor to disseminate in the networks and the higher the mean of knowledge and the mean of rationality are, the more time it will take for the model to evolve to the steady state.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,