Article ID Journal Published Year Pages File Type
7375846 Physica A: Statistical Mechanics and its Applications 2018 23 Pages PDF
Abstract
Realistic scenario can be represented by general canonical ensemble way better than the ideal one, with proper parameter sets involved. We study the Bose-Einstein condensation phenomena of liquid helium within the framework of Tsallis statistics. With a comparatively high value of the deformation parameter q(∼1.4), the theoretically calculated value of the critical temperature (Tc) of the phase transition of liquid helium is found to agree with the experimentally determined value (Tc=2.17K), although they differs from each other for q=1 (undeformed scenario). This throws a light on the understanding of the phenomenon and connects temperature fluctuation(non-equilibrium conditions) with the interactions between atoms qualitatively. More interactions between atoms give rise to more non-equilibrium conditions which is as expected.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,