Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7375894 | Physica A: Statistical Mechanics and its Applications | 2018 | 22 Pages |
Abstract
In this paper, the Tsallis non-extensive q-statistics in ionospheric dynamics was investigated using the total electron content (TEC) obtained from two Global Positioning System (GPS) receiver stations. This investigation was carried out considering the geomagnetically quiet and storm periods. The micro density variation of the ionospheric total electron content was extracted from the TEC data by method of detrending. The detrended total electron content, which represent the variation in the internal dynamics of the system was further analyzed using for non-extensive statistical mechanics using the q-Gaussian methods. Our results reveals that for all the analyzed data sets the Tsallis Gaussian probability distribution (q-Gaussian) with value q>1 were obtained. It was observed that there is no distinct difference in pattern between the values of qquiet and qstorm. However the values of q varies with geophysical conditions and possibly with local dynamics for the two stations. Also observed are the asymmetric pattern of the q-Gaussian and a highly significant level of correlation for the q-index values obtained for the storm periods compared to the quiet periods between the two GPS receiver stations where the TEC was measured. The factors responsible for this variation can be mostly attributed to the varying mechanisms resulting in the self-reorganization of the system dynamics during the storm periods. The result shows the existence of long range correlation for both quiet and storm periods for the two stations.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics
Authors
B.O. Ogunsua, J.A. Laoye,