Article ID Journal Published Year Pages File Type
7376888 Physica A: Statistical Mechanics and its Applications 2017 12 Pages PDF
Abstract
Collective prediction algorithms have been used to improve performances when network structures are involved in prediction tasks. The training dataset of such tasks often contain information of content, links and labels, while the testing dataset have only content and link information. Conventional collective prediction algorithms conduct predictions based on the content of a node and the information of its direct neighbors with a base classifier. However, the information of some direct neighbor nodes may be not consistent with the target one. In addition, the information of indirect neighbors can be helpful when that of direct neighbors is scant. In this paper, instead of using information of direct neighbors, we propose to apply community structures in networks to prediction tasks. A community detection method is aggregated into the collective prediction process to improve prediction performance. Experimental results show that the proposed algorithm outperforms a number of standard prediction algorithms specially under conditions that labeled training dataset are limited.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , , ,