Article ID Journal Published Year Pages File Type
7376971 Physica A: Statistical Mechanics and its Applications 2016 15 Pages PDF
Abstract
The charge ordering is a phenomenon associated with inhomogeneous distribution of electron density occurring mostly in strongly correlated materials such as transition metal oxides or organic conductors. The extended Hubbard model (EHM) is one of the simplest model for description of this phenomenon. The full phase diagram of the EHM with intersite density-density interactions W1 and W2 (nearest- and next-nearest-neighbour, respectively) in the atomic limit as a function of the chemical potential has been derived in the variational approach, which treats the on-site interaction exactly and the intersite interactions within mean-field approximation. The results for arbitrary values of model parameters (in the two-sublattice assumption) reveal that the diagram has very complex structure including various (multi-)critical points. A variety of the transitions between different phases, in particular with long-range charge-order, has been found to occur on the diagram. The results presented are rigorous ones in the high-dimension limit for any W1 and W2≤0.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,