Article ID Journal Published Year Pages File Type
7377753 Physica A: Statistical Mechanics and its Applications 2016 11 Pages PDF
Abstract
One of the important tasks in relational data analysis is link prediction which has been successfully applied on many applications such as bioinformatics, information retrieval, etc. The link prediction is defined as predicting the existence or absence of edges between nodes of a network. In this paper, we propose a novel method for link prediction based on Distance Dependent Chinese Restaurant Process (DDCRP) model which enables us to utilize the information of the topological structure of the network such as shortest path and connectivity of the nodes. We also propose a new Gibbs sampling algorithm for computing the posterior distribution of the hidden variables based on the training data. Experimental results on three real-world datasets show the superiority of the proposed method over other probabilistic models for link prediction problem.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,