Article ID Journal Published Year Pages File Type
7377925 Physica A: Statistical Mechanics and its Applications 2016 19 Pages PDF
Abstract
Fractional-order SIR models have become increasingly popular in the literature in recent years, however unlike the standard SIR model, they often lack a derivation from an underlying stochastic process. Here we derive a fractional-order infectivity SIR model from a stochastic process that incorporates a time-since-infection dependence on the infectivity of individuals. The fractional derivative appears in the generalised master equations of a continuous time random walk through SIR compartments, with a power-law function in the infectivity. We show that this model can also be formulated as an infection-age structured Kermack-McKendrick integro-differential SIR model. Under the appropriate limit the fractional infectivity model reduces to the standard ordinary differential equation SIR model.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,