Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7380541 | Physica A: Statistical Mechanics and its Applications | 2014 | 6 Pages |
Abstract
In the present Short Note an idea is proposed to explain the emergence and the observation of processes in complex media that are driven by fractional non-Markovian master equations. Particle trajectories are assumed to be solely Markovian and described by the Continuous Time Random Walk model. But, as a consequence of the complexity of the medium, each trajectory is supposed to scale in time according to a particular random timescale. The link from this framework to microscopic dynamics is discussed and the distribution of timescales is computed. In particular, when a stationary distribution is considered, the timescale distribution is uniquely determined as a function related to the fundamental solution of the space-time fractional diffusion equation. In contrast, when the non-stationary case is considered, the timescale distribution is no longer unique. Two distributions are here computed: one related to the M-Wright/Mainardi function, which is Green's function of the time-fractional diffusion equation, and another related to the Mittag-Leffler function, which is the solution of the fractional-relaxation equation.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics
Authors
Gianni Pagnini,