Article ID Journal Published Year Pages File Type
738466 Sensors and Actuators A: Physical 2007 8 Pages PDF
Abstract

In the surface micromachining technique, residual stress and sticking effect play an important role in determining whether a microstructure is suspended or collapse during a release process. In this paper, we propose a simpler method for making suspended membranes for thermally isolated application by using cheap processing steps and compatible with CMOS-process; also, there are some simulations done to predict stiction as function of the anchor profile. It is demonstrated by fabricating the test structures of CMOS-process compatible surface micromachined bolometer using aluminum sacrificial layer with high yield and high throughput. The aluminum sacrificial layer provides some benefits including rapid wet-etching and high wet-etching selectivity with respect to dielectric materials. The residual stress and gravity of the microstructures are evaluated with structural simulations, and the sticking effect can be alleviated by an appropriate structure design and a release process. Once the residual stress is known, we can successfully use Coventorware simulations to predict a suspended membrane by controlling the anchor profile which contains sidewall conformal factor and sidewall angle. The simulation results are in good agreement with the experiments.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,