Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
738592 | Sensors and Actuators A: Physical | 2006 | 8 Pages |
This paper describes a technique for the measurement of the electrolyte temperature in an operating polymer electrolyte fuel cell (PEFC). A patterned thin film gold thermistor embedded in a 16 μm thick parylene film was laminated in the Nafion® electrolyte layer for in situ temperature measurements. Experimental results show that the sensor has a linear response of (3.03 ± 0.09) × 10−3 °C−1 in the 20–100 °C temperature range and is robust enough to withstand the electrolyte expansion forces that occur during water uptake. An electrolyte temperature increase of 1.5 °C was observed in real-time when operating the fuel cell at 0.2 V and a current density of 0.19 A/cm2. The temperature sensitivity of the present sensor is in an order of magnitude better than the conventional micro-thermocouples that have been reported. Additionally, use of micro-fabrication techniques allows for an accurate placement of the temperature sensor within the fuel cell. Simulation results show that the sensor has no significant effect on the local temperature distribution.