Article ID Journal Published Year Pages File Type
739293 Sensors and Actuators A: Physical 2006 9 Pages PDF
Abstract

Conducting polymer actuators are emerging new actuators with many promising features suitable to some cutting edge applications ranging from biomedical devices to micro/nano manipulation systems. These features are highly influenced by their interrelated mechanical, electrical and chemical properties. This makes their behavior complex, and difficult to understand and predict. In order to make use of their full potentials, there is an increasing need to investigate into their actuation mechanism in order to provide enhanced degrees of understanding and predictability. With this in mind, it is the object of this paper to characterize and model the bending motion of the strip-type fourth generation polypyrrole polymer (PPy) actuators, which operate in a non-liquid medium, i.e. in the air. After deriving a mathematical model approximately accounting for mechanical, electrical, and chemical properties and geometric parameters of the actuator, the model has been experimentally verified for two actuators with the dimensions of (20 mm × 1 mm × 0.16 mm) and (10 mm × 1 mm × 0.21 mm). Theoretical and experimental results are presented to demonstrate that the model is effective enough to predict the displacement output of the strip type-PPy actuator all along the edge of the actuator as a function of the applied voltage.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,