Article ID Journal Published Year Pages File Type
745186 Optics and Lasers in Engineering 2011 8 Pages PDF
Abstract

The effects of heat input on the low power Nd:YAG pulse laser conduction weldability of magnesium alloy AZ61 plates were investigated. The results show that for a hot-extruded AZ61 magnesium alloy plate laser conduction welding, the penetration depth and area of welds cross-section increased with an increase of the heat input. The microstructure of a band zone, which is located in the fusion zone (FZ) and close to the fusion boundary, evolved with an increase of the heat input. Moreover, an increase of the heat input increased the tendency of the formation of solidification cracking and liquation cracking. The porosities and average diameters of pores increased with an increase of the heat input but reduced sharply when a relatively large heat input was achieved. In addition, the degree of formation of craters increased linearly with an increase of the heat input.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , ,