Article ID Journal Published Year Pages File Type
746084 Optics and Lasers in Engineering 2009 5 Pages PDF
Abstract

In this paper, we analyzed the impact of laser-spectral width incorporating dual-electrode Mach–Zehnder modulator (DEMZM) in single-tone radio-over-fiber (RoF) transmission system by simulation setup. It is shown that an improvement in the measurement of received radio frequency (RF) power is achieved by reducing the laser line width from 100 MHz to 100 kHz, which further improves the BER rate and optical link by transmitting the information with low power. The results are calculated for 20 and 50 km optical single sideband (OSSB)–RoF transmission system by varying the chirp from 0 to −3 as it requires less bandwidth than optical dual sideband (ODSB)–RoF system and is tolerable for power degradation due to a chromatic fiber-dispersion, through a standard single-mode fiber (SSMF) carried by a continuous wave (CW) laser at 1550 nm of laser-spectral width varying from 100 MHz to 100 kHz with CW power of 10 mW that modulates a single RF channel of 20 GHz. Further, deployment of such lasers with OSSB scheme helps the telecom industry to reduce the designing cost of RoF communication systems.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,