Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7477465 | Journal of Environmental Management | 2018 | 7 Pages |
Abstract
Three 4 L anaerobic moving bed biofilm reactors (AMBBR) treated brewery wastewater with AC920 media providing 680 m2 protected surface area per m3 of media. Different hydraulic retention times (HRT; 24, 18, 12, 10, 8 and 6 h) at 40% media fill and 35 °C, as well as different temperatures (15, 25 and 35 °C) at 50% media fill and 18 h HRT were examined. Best performance at 35 °C and 40% media fill was observed when HRT was 18 h, which corresponded with 92% removal of soluble COD (sCOD). Organic loading rates (OLR) above 24 kg-COD mâ3dâ1 decreased performance below 80% sCOD removal at 35 °C and 40% media fill. The reason was confirmed to be that surface area loading rates (SALR) above 50 g-sCOD mâ2dâ1 caused excessive biofilm thickness that filled up internal channels of the media, leading to mass transfer limitations. Temperature had a very significant impact on process performance with 50% media fill and 18 h HRT. Biomass concentrations were significantly higher at lower temperatures. At 15 °C the mass of volatile solids (VS) was more than three times higher than at 35 °C for the same OLR. Biofilms acclimated to 25 °C and 15 °C achieved removal of 80% sCOD at SALR of 10 g-sCOD mâ2dâ1 and 1.0 g-sCOD mâ2dâ1, respectively. Even though biomass concentrations were higher at lower temperature, biofilm acclimated to 25 °C and 15 °C performed significantly slower than that acclimated to 35 °C.
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
A. di Biase, T.R. Devlin, M.S. Kowalski, J.A. Oleszkiewicz,