| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 7480694 | Journal of Environmental Management | 2016 | 6 Pages |
Abstract
A field experiment was conducted from 2005 to 2008 in Fulton County, Western Illinois with biosolids from conventional wastewater treatment applied as corn fertilizer in a series of P rates (0, 163, 325, 488, 650 kg P haâ1) along with commercial P fertilizer - triple superphosphate P (TSP) as reference to assess biosolids-P plant availability and potential loss to waterbodies through runoff. Air-dried biosolids and TSP were incorporated into surface soil at end of 2005, and corn (Zea mays) was planted for three consecutive years (2006-2008). Concentrations of soil extractable P except for Mehlich-3 P were always lower in the biosolids than TSP treatments at the same P rates. The soil potentially available P in water extractable P (WEP) and Olsen P derived from biosolids-P estimated by the exponential depletion model was 2-4% and 15-24% of total P in the applied biosolids, respectively. The residence time of biosolids-induced WEP and Olsen P in Midwest soil under annual corn cropping was 5 and 2 years, respectively. Corn tissue analysis showed lower increase in P concentration by biosolids-P than TSP. The elevation rate of soluble reactive P (SRP) concentration in simulated runoff was less by biosolids than TSP. Based on the data in this study, the plant availability and environmental risk of biosolids-P are lower than those of TSP in the Midwest soil, thus use of biosolids as P nutrient for corn would not cause a major impairment to water sources even P applied through biosolids was not completely used by annual crop.
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
G. Tian, A.E. Cox, K. Kumar, T.C. Granato, G.A. O'Connor, H.A. Elliott,
