Article ID Journal Published Year Pages File Type
749351 Solid-State Electronics 2007 6 Pages PDF
Abstract
In this paper, we report for the first time a novel dual metal gate (MG) integration process for gate-first CMOS platform by utilizing the intermixing (InM) of laminated ultra-thin metal layers during high-temperature annealing at 1000 °C. In this process, an ultra-thin (∼2 nm) TaN film is first deposited on gate dielectric as a buffer layer. Preferable laminated metal stacks for NMOS and PMOS are then formed on a same wafer through a selective wet-etching process in which the gate dielectric is protected by the TaN buffer layer. Dual work function for CMOS can finally be achieved by the intermixing of the laminated metal films during the S/D activation annealing. To demonstrate this process, prototype metal stacks of TaN/Tb/TaN (NMOS) and TaN/Ti/HfN (PMOS) has been integrated on a single wafer, with WF of 4.15 and 4.72 eV achieved, respectively. Threshold voltage (Vth) adjustment and transistor characteristics on high-k HfTaON dielectric are also studied.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , ,