Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
750031 | Sensors and Actuators A: Physical | 2006 | 11 Pages |
Non-linear hysteresis is a complicated phenomenon associated with magnetorheological (MR) fluid dampers. A new model for MR dampers is proposed in this paper. For this, computationally-tractable algebraic expressions are suggested here in contrast to the commonly-used Bouc–Wen model, which involves internal dynamics represented by a non-linear differential equation. In addition, the model parameters can be explicitly related to the hysteretic phenomenon. To identify the model parameters, a particle swarm optimization (PSO) algorithm is employed using experimental force–velocity data obtained from various operating conditions. In our algorithm, it is possible to relax the need for a priori knowledge on the parameters and to reduce the algorithmic complexity. Here, the PSO algorithm is enhanced by introducing a termination criterion, based on the statistical hypothesis testing to guarantee a user-specified confidence level in stopping the algorithm. Parameter identification results are included to demonstrate the accuracy of the model and the effectiveness of the identification process.