| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 751923 | Systems & Control Letters | 2015 | 9 Pages |
In systems with resource constraints, such as actuation limitations or limited communication bandwidth, it is desired to obtain control signals that are either sparse or sporadically changing in time to reduce resource utilization. In this paper, we propose a resource-aware self-triggered MPC strategy for discrete-time nonlinear systems subject to state and input constraints that has three important features: Firstly, significant reductions in resource utilization can be realized without modifying the cost function by input regularization or explicitly penalizing resource usage. Secondly, the control laws and triggering mechanisms are synthesized so that a priori chosen performance levels (in terms of the original cost function) are guaranteed by design next to asymptotic stability and constraint satisfaction. Thirdly, we address the co-design problem of jointly designing the feedback law and the triggering condition. By means of numerical examples, we show the effectiveness of this novel strategy.
