Article ID Journal Published Year Pages File Type
751967 Systems & Control Letters 2012 9 Pages PDF
Abstract

In this paper, we study the problem of robust consensus tracking for a class of second-order multi-agent dynamic systems with disturbances and unmodeled agent dynamics. Contrary to previous approaches, we design continuous distributed consensus protocols to enable global asymptotic consensus tracking. Our focus is on consensus protocol design and stability analysis which also leads to the derivation of sufficient conditions for consensus tracking. We first consider the case of undirected information exchange with a symmetric and positive definite information-exchange matrix. We develop an identifier for each agent to estimate the unknown disturbances and unmodeled agent dynamics. Based on the identifier, we develop a consensus tracking protocol to enable global asymptotic consensus tracking using local information obtained from neighboring agents. The closed-loop stability is proven using Lyapunov analysis theory and an invariance-like theorem. We then extend the approach to the case of directed information exchange, whose information-exchange matrix is only of full rank so that the approach for undirected graphs cannot be directly applied. We show that global asymptotic consensus tracking can still be enabled under the new derived sufficient conditions by designing a new identifier, which utilizes the estimated information exchanged from neighboring agents, and constructing a new Lyapunov function. Examples and numerical simulations are provided to validate the effectiveness of the proposed robust consensus tracking method.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
,