Article ID Journal Published Year Pages File Type
751980 Systems & Control Letters 2012 9 Pages PDF
Abstract

This paper studies adaptive attitude synchronization of spacecraft formation with possible time delay. By introducing a novel adaptive control architecture, decentralized controllers are developed, which allow for parameter uncertainties and unknown external disturbances. Based upon graph theory, Lyapunov stability theory and time-delay control theory, analytical tools are also provided. A distinctive feature of this work is to address the adaptive attitude synchronization with unknown parameters and coupling time delay in a unified theoretical framework, with general directed information flow. It is shown that arbitrary desired attitude tracking and synchronization with respect to a given reference can be attained. Simulation results are provided to demonstrate the effectiveness of the obtained results.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , , ,