Article ID Journal Published Year Pages File Type
752024 Systems & Control Letters 2011 7 Pages PDF
Abstract

This paper addresses the constrained motion planning problem for nonholonomic systems represented by driftless control systems with output. The problem consists in defining a control function driving the system output to a desirable point at a given time instant, whereas state and control variables remain over the control horizon within prescribed bounds. The state and control constraints are handled by extending the control system with a pair of state equations driven by the violation of constraints, and adding regularizing perturbations. For the regularized system a Jacobian motion planning algorithm is designed, called imbalanced. Solutions of example constrained motion planning problems for the rolling ball illustrate the theoretical concepts.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,