Article ID Journal Published Year Pages File Type
752141 Systems & Control Letters 2013 8 Pages PDF
Abstract

We consider the problem of stabilization of a linear ODE with input dynamics governed by the linearized Schrödinger equation. The interconnection between the ODE and Schrödinger equation is bi-directional at a single point. We construct an explicit feedback law that compensates the Schrödinger dynamics at the inputs of the ODE and stabilizes the overall system. Our design is based on a two-step backstepping transformation by introducing an intermediate system and an intermediate control. By adopting the Riesz basis approach, the exponential stability of the closed-loop system is built with the pre-designed decay rate and the spectrum-determined growth condition is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed design.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,