Article ID Journal Published Year Pages File Type
752162 Systems & Control Letters 2009 9 Pages PDF
Abstract

This paper aims to study the problem of input-to-state stability (ISS) for discrete time-delay systems. By employing the Razumikhin technique and suitable Lyapunov functions, backward and forward Razumikhin-type ISS theorems, that guarantee the global ISS, global asymptotic ISS and global exponential ISS for general discrete time-delay systems are established. Moreover, Razumikhin-type global exponential ISS theorems give the estimation of the convergence speed. As an application, the Razumikhin-type exponential ISS result is used to derive exponential ISS criteria for a class of interconnected discrete systems with coupling time-delays and disturbance inputs. Finally, examples are given to illustrate the results.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,