Article ID Journal Published Year Pages File Type
752197 Systems & Control Letters 2014 9 Pages PDF
Abstract

This paper is devoted to the distributed finite-time observers for multi-agent systems, where the control inputs are required to be bounded and the velocities are assumed to be not available for feedback. An effective framework through defining a class of coordinated saturation functions is introduced, under which both a first-order finite-time observer and a high-order finite-time observer are constructed. By applying the homogeneous theory for stability analysis, it is proven that all the states of the followers can converge to that of the leader in finite time under our proposed observers. With mild modifications of our control strategies, the foregoing results are then extended to the distributed finite-time containment control problem, where the states of the followers converge to the convex hull spanned by the multiple dynamic leaders. Numerical simulations are presented to demonstrate the efficiency of our methods.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,